
Simulink® Test™
Getting Started Guide

R2022b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Test™ Getting Started Guide
© COPYRIGHT 2015–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2015 Online Only New for Version 1.0 (Release 2015a)
September 2015 Online Only Revised for Version 1.1 (Release 2015b)
October 2015 Online only Rereleased for Version 1.0.1 (Release 2015aSP1)
March 2016 Online Only Revised for Version 2.0 (Release 2016a)
September 2016 Online Only Revised for Version 2.1 (Release 2016b)
March 2017 Online Only Revised for Version 2.2 (Release 2017a)
September 2017 Online Only Revised for Version 2.3 (Release 2017b)
March 2018 Online Only Revised for Version 2.4 (Release 2018a)
September 2018 Online Only Revised for Version 2.5 (Release 2018b)
March 2019 Online Only Revised for Version 3.0 (Release 2019a)
September 2019 Online Only Revised for Version 3.1 (Release 2019b)
March 2020 Online Only Revised for Version 3.2 (Release 2020a)
September 2020 Online Only Revised for Version 3.3 (Release 2020b)
March 2021 Online Only Revised for Version 3.4 (Release 2021a)
September 2021 Online Only Revised for Version 3.5 (Release 2021b)
March 2022 Online Only Revised for Version 3.6 (Release 2022a)
September 2022 Online Only Revised for Version 3.7 (Release 2022b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Product Overview
1

Simulink Test Product Description . 1-2
Key Features . 1-2

Introduction
2

Functional Testing for Verification . 2-2
Test Authoring . 2-2
Test Generation . 2-3
Test Execution . 2-3
Reporting . 2-3

Plan Your Test
3

Test Planning and Strategies . 3-2
Identify the Test Goals . 3-2
Test a Whole Model or Specific Components . 3-3
Use a Test Harness . 3-4
Determine the Inputs and Outputs . 3-4
Optimize Test Execution Time . 3-4
Use the Programmatic or GUI Interface . 3-5

Create and Run a Baseline Test . 3-6
Start Test Manager . 3-6
Verify Model Behavior Against Requirements . 3-6
Create and Run a Baseline Test . 3-10

Create a Test Harness . 3-12
Create the Harness . 3-12
Simulate the Test Harness . 3-13
Test Using the Test Manager . 3-13

iii

Contents

Product Overview

1

Simulink Test Product Description
Develop, manage, and execute simulation-based tests

Simulink Test provides tools for authoring, managing, and executing systematic, simulation-based
tests of models, generated code, and simulated or physical hardware. It includes simulation, baseline,
and equivalence test templates that let you perform functional, unit, regression, and back-to-back
testing using software-in-the-loop (SIL), processor-in-the-loop (PIL), and real-time hardware-in-the-
loop (HIL) modes.

With Simulink Test you can create nonintrusive test harnesses to isolate the component under test.
You can define requirements-based assessments using a text-based language, and specify test input,
expected outputs, and tolerances in a variety of formats, including Microsoft® Excel®. Simulink Test
includes a Test Sequence block that lets you construct complex test sequences and assessments, and
a test manager for managing and executing tests. Observer blocks let you access any signal in the
design without changing the model or the model interface. Large sets of tests can be organized and
executed in parallel or on continuous integration systems.

You can trace tests to requirements (with Requirements Toolbox™) and generate reports that include
test coverage information from Simulink Coverage™.

Support for industry standards is available through IEC Certification Kit (for IEC 61508 and ISO
26262) and DO Qualification Kit (for DO-178).

Key Features
• Test harness for subsystem or model testing
• Test sequence block for running tests and assessments
• Pass-fail criteria, including tolerances, limits, and temporal conditions
• Baseline, equivalence, back-to-back, and real-time testing
• Setup and cleanup scripts for customizing test execution
• Test Manager for authoring, executing, and organizing test cases and their results
• Customizable report generation for documenting test outcomes

1 Product Overview

1-2

https://www.mathworks.com/products/iec-61508.html
https://www.mathworks.com/products/do-178.html

Introduction

2

Functional Testing for Verification
In this section...
“Test Authoring” on page 2-2
“Test Generation” on page 2-3
“Test Execution” on page 2-3
“Reporting” on page 2-3

You can use Simulink Test to author, manage, and execute tests for Simulink models and generated
code. The Test Manager provides an interactive way to author tests from scratch, import existing test
data and harness models, and organize your tests. You can run test cases individually, in batch, or as
a filtered subset of the test file, and you can control parameters and iterate over parameter values.
The modes in which you can run tests are in-model, software-in-the-loop (SIL), processor-in-the-loop
(PIL), and hardware-in-the-loop (HIL). To run HIL tests, the target computer must have Simulink
Real-Time™ installed. You can also run the same tests back-to-back in multiple releases of MATLAB®.

Results include a concise pass/fail summary for elements in your test hierarchy, including iterations,
test cases, test suites, and the test file. Visualization tools help you drill down into individual data sets
to determine, for example, the time and cause of a particular failure. Coverage results from Simulink
Coverage help quantify the extent to which your model or code is tested.

For example, you can:

• Compare results between your model and generated code by running back-to-back equivalence
tests between different environments, such as model simulation, SIL, PIL, and HIL execution.
Coverage is not supported for SIL or PIL blocks.

• Optimize your model or code by iterating over parametric values or configuration parameters.
• Start testing on a unit level by using test harnesses, and reuse those tests as you scale up to the

integration and system level.
• Run models that contain test vectors and assessments inside the Simulink block diagram.

Simulink Test includes a comprehensive programmatic interface for writing test scripts, and Simulink
tests can be integrated with MATLAB tests using MATLAB Unit Test.

Test Authoring
When you author a test, you define test inputs, signals of interest, signal pass/fail tolerances,
iterations over parametric values, and assessments for simulation behavior. You can author test input
vectors in several ways:

• Graphically, such as with the Signal Editor
• From datasets, such as using Excel or MAT files
• As a sequence of test steps that progresses according to time or logical conditions

You can define assessments to indicate when functional requirements are not met. These assessments
follow from your design requirements or your test plan. You can define assessments in several ways:

• With a structured assessment language. The structured language helps you assess complex timing
behavior, such as two events that must happen within a certain time frame. It also helps you
identify conflicts between requirements.

2 Introduction

2-2

• With verify statements in a Test Assessment or Test Sequence block. For information on how to
set up the blocks in your model, see “Assess Model Simulation Using verify Statements”.

• With blocks in the Model Verification block library.
• With tolerances you set on the simulation data output. Tolerances define the acceptable delta from

baseline data or another simulation.
• With a custom criteria script that you author using MATLAB.

You can use existing test data and test models with Simulink Test. For example, if you have data from
field testing, you can test your model or code by mapping the data to your test case. If you have
existing test models that use Model Verification blocks, you can organize those tests and manage
results in the Test Manager.

Test Generation
Using Simulink Design Verifier™, you can generate test cases that achieve test objectives or increase
model or code coverage. You can generate test cases from the Test Manager, or from the Simulink
Design Verifier interface. Either way, you can include the generated test cases with your original tests
to create a test file that achieves complete coverage. You can also link the new test cases to
additional requirements.

Test Execution
You can control test execution modes from the Test Manager. For example, you can:

• Run tests in multiple releases of MATLAB. Multiple release testing allows you to leverage recent
test data while executing your model in its production version.

• Run back-to-back tests to verify generated code. You can run the same test in model, SIL, and PIL
mode and compare numeric results to demonstrate code-model equivalence.

• Run HIL tests to verify systems running on real-time hardware using Simulink Real-Time,
including verify statements in your model that help you determine whether functional
requirements are met.

• Decrease test time by running tests in parallel using the Parallel Computing Toolbox™ or MATLAB
Parallel Server™, or running a filtered subset of your entire test file.

Reporting
When reporting your test results, you can set report properties that match your development
environments. For example, reporting can depend on whether tests passed or failed, and reports can
include data plots, coverage results, and requirements linked to your test cases. You can create and
store custom MATLAB figures that render with a report. Reporting options persist with your test file,
so they run every time you execute a test.

A MATLAB Report Generator™ license adds additional customization options, including:

• Creating reports from a Microsoft Word or PDF template
• Assembling reports using custom objects that aggregate individual results

 Functional Testing for Verification

2-3

See Also

Related Examples
• “Test Planning and Strategies” on page 3-2
• “Create and Run a Baseline Test” on page 3-6
• “Inputs”
• “Test Execution”

2 Introduction

2-4

Plan Your Test

• “Test Planning and Strategies” on page 3-2
• “Create and Run a Baseline Test” on page 3-6
• “Create a Test Harness” on page 3-12

3

Test Planning and Strategies
In this section...
“Identify the Test Goals” on page 3-2
“Test a Whole Model or Specific Components” on page 3-3
“Use a Test Harness” on page 3-4
“Determine the Inputs and Outputs” on page 3-4
“Optimize Test Execution Time” on page 3-4
“Use the Programmatic or GUI Interface” on page 3-5

You can use Simulink Test to functionally test models and code. Before you create a test, consider:

• Your test goals on page 3-2
• Whether to test the whole model or individual components on page 3-3
• Whether to use a test harness on page 3-4
• What your inputs and outputs should be on page 3-4
• How to optimize your test simulation time on page 3-4
• Whether to use the interactive GUI or the programmatic interface on page 3-5

Identify the Test Goals
Before you author your test, understand your goals. You might have one or more of these goals:

Simulation Testing

In cases where your test only requires a model to simulate without errors or to perform regression
testing, you can run a simulation test. Simulation tests are useful if your model is still in development,
or if you have an existing test model that contains inputs and assessments, and logs relevant data.
For an example, see “Test a Simulation for Run-Time Errors”.

Requirements Verification

If you have Requirements Toolbox installed, you can assess whether a model behaves according to
requirements by linking one or more test cases to requirements authored in the Requirements
Toolbox. You can verify whether the model meets requirements by:

• Authoring verify statements or custom criteria scripts in the model or test harness.
• Including “Model Verification Blocks” in the model or test harness.
• Capturing simulation output in the test case, and comparing simulation output to baseline data.

For an example the uses verify statements, see “Test Downshift Points of a Transmission
Controller”.

Data Comparison

You can compare simulation results to baseline data or to another simulation. You can also compare
results between different MATLAB releases.

3 Plan Your Test

3-2

In a baseline test, you first establish the baseline data, which are the expected outputs. You can
define baseline data manually, import baseline data from an Excel or MAT file, or capture baseline
data from a simulation. For more information, see “Compare Model Output to Baseline Data”

In an equivalence test, you compare two simulations to see whether they are equivalent. For example,
you can compare results from two solvers, or compare results from normal mode simulation to
generated code in software-in-the-loop (SIL), processor-in-the loop (PIL), or real time hardware-in-
the-loop (HIL) mode. You can explore the impact of different parameter values or calibration data sets
by running equivalence tests. For an equivalence testing example, see “Test Two Simulations for
Equivalence”.

In a multiple release test you run tests in more than one installed MATLAB version. Use multiple
release testing to verify that tests pass and produce the same results in different versions.

SIL and PIL Testing

You can verify the output of generated code by running back-to-back simulations in normal and SIL or
PIL modes. Running back-to-back tests in normal and SIL or PIL mode is a form of equivalence
testing. The same back-to-back test can run multiple test scenarios by iterating over different test
vectors defined in a MAT or Excel file. You can apply tolerances to your results to allow for value and
timing technically acceptable differences between the model and generated code. Tolerances can also
apply to code running on hardware in real time. You cannot use SIL or PIL mode in Subsystem
models.

Real-Time Testing

With Simulink Real-Time, you can include the effects of physical plants, signals, and embedded
hardware by executing tests in HIL (hardware-in-the-loop) mode on a real-time target computer. By
running a baseline test in real-time, you can compare results against known good data. You can also
run a back-to-back test between a model, SIL, or PIL, and a real-time simulation.

Coverage

With Simulink Coverage, you can collect coverage data to help quantify the extent to which your
model or code is tested. When you set up coverage collection for your test file, the test results include
coverage for the system under test and, optionally, referenced models. You can specify the coverage
metrics to return. Coverage is supported for Model Reference blocks, atomic Subsystem blocks, and
top-level models if they are configured for Software-in-the-Loop (SIL) or Processor-in-the-Loop (PIL).
Coverage is not supported for SIL or PIL S-Function blocks.

If your results show incomplete coverage, you can increase coverage by:

• Adding test cases manually to the test file.
• Generating test cases to increase coverage, with Simulink Design Verifier.

In either case, you can link the new test cases to requirements, which is required for certain
certifications.

Test a Whole Model or Specific Components
You can test a whole model or a model component. One way to perform testing is to first unit test a
component and then increase the number of components being tested to perform integration and
system-level testing. By using this testing scheme, you can more easily identify and debug test case
and model design issues. If you want to obtain aggregated coverage, test your whole model.

 Test Planning and Strategies

3-3

Use a Test Harness
A test harness contains a copy of the component being tested or, for testing a whole model, a
reference to the model. Harnesses also contain the inputs and outputs used for testing. Using a test
harness isolates the model or component being tested from the main model, which keeps the main
model clean and uncluttered.

You can save the harness internally with your model file, or in an external file separate from the
model. Saving the harness internally simplifies sharing the model and tests because there are fewer
artifacts, and allows you to more easily debug testing issues. Saving the harness externally lets you
reuse and share just the harness, and clearly separate your design from your testing artifacts. The
test harness works the same whether it is internal or external to the model. For more information
about test harnesses, see “Test Harness and Model Relationship” and “Create a Test Harness” on
page 3-12.

The figure shows an example of a test harness.

The component under test is the shift_logic block, which is copied from the main model during
harness creation. The copy of the shift_logic block is linked to the main model. The inputs are
Inport blocks and the output is an Outport block. The vertical subsystems contain signal specification
blocks and routing that connects the component interface to the inputs and outputs.

Determine the Inputs and Outputs
Consider what input signals and signal tolerances to use to test your model and where to obtain them
from. You can add a Signal Editor block to your test harness to define the input signals. Alternatively,
you can define and use inputs from a Microsoft Excel or MAT file, or a Test Sequence block. If you
have Simulink Design Verifier installed, you can generate test inputs automatically.

For the output from your test, consider whether you want the test details and test results data saved
to a report for archiving or distribution. You can also use outputs as inputs to Test Assessment blocks
to assess and verify the test results. For baseline tests, use outputs to compare the actual results to
the expected results.

Optimize Test Execution Time
Ways that you can optimize testing time include using iterations, parallel testing, and running a
subset of test cases.

When you design your test, decide whether you want multiple tests or iterations of the same test. An
iteration is a variation of a test case. Use iterations for different sets of input data, parameter sets,
configuration sets, test scenarios, baseline data, and simulation modes in iterations. One advantage of

3 Plan Your Test

3-4

using iterations is that you can run your tests using fast restart, which avoids having to recompile the
model for each iteration and thus, reduces simulation time.

For example, if you have multiple sets of input data, you can set up one test case iteration for each
external input file. Another way to override parameters is using scripted parameter sweeps, which
enable you to iterate through many values. Use separate test cases if you need independent
configuration control or each test relates to a different requirement; For more information on
iterations, see “Test Iterations”.

If you have Parallel Computing Toolbox, you can run tests in parallel on your local machine or cluster.
If you have MATLAB Parallel Server, you can run tests in parallel on a remote cluster. Testing in
parallel is useful when you have a large number of test cases or test cases that take a long time to
run. See “Run Tests Using Parallel Execution”.

Another way to optimize testing time is to run a subset of test cases by tagging the tests to run.

For more information on improving and optimizing model simulation, see the Optimize Performance
section under Simulation in the Simulink documentation.

Use the Programmatic or GUI Interface
To create and run tests Simulink Test provides the Test Manager, which is an interactive tool, and API
commands and functions you can use in test scripts and at the command-line. With the Test Manager
you can manage numerous tests and capture and manage results systematically. If you need to define
new test assessments, use the Test Manager because this functionality is not available in the API. If
you are working in a Continuous Integration environment, use the API. Otherwise, you can use
whichever option you prefer.

See Also
Test Manager

Related Examples
• “Functional Testing for Verification” on page 2-2
• “Create and Run a Baseline Test” on page 3-6

 Test Planning and Strategies

3-5

Create and Run a Baseline Test
In this section...
“Start Test Manager” on page 3-6
“Verify Model Behavior Against Requirements” on page 3-6
“Create and Run a Baseline Test” on page 3-10

In this tutorial, you set up and run two tests:

• The first test verifies whether a model meets a requirement.
• The second test compares a simulation result to baseline data.

Start Test Manager
1 Open the sltestCruiseControlDefective model in the matlab/examples/

simulinktest/main folder.
2 To start the Test Manager, on the Apps tab, under Model Verification, Validation, and Test, click

Simulink Test. On the Tests tab, click Simulink Test Manager.

Verify Model Behavior Against Requirements
In this example, you create a test file structure, add a test case to it, and run the test.

Create the Test File Structure

1 Set the current folder to a writable folder.
2 Create a test file. From the Test Manager toolstrip, select New > Test File.
3 Name the file Tutorial Tests and save it.

A test file contains one or more test suites, and test suites contain one or more test cases. Use
this structure to organize related tests. This structure also helps you run tests individually or to
run all tests in the file or suite.

4 The default test case is a baseline test. Convert it to a Simulation test. Select the test case and,
from the context menu, select Convert to > Simulation Test and click Yes to confirm the
conversion.

3 Plan Your Test

3-6

5 Rename the test My Verification Test. You can use the context menu in the test browser
and select Rename. Or, you can click the name and type a new one in the test case.

Assign a Model to the Test Case

The model uses a Verification Subsystem block from the Simulink Design Verifier library. The
subsystem contains an Assertion block that checks whether the system disengages if the brake has
been applied for three time steps. Signal logging is enabled for the Signal Editor block outputs.

Set the test case to use the sltestCruiseControlDefective model. In Test Manager, under

System Under Test, click the Use current model button .

You can run this test case without specifying other assessments, because the model contains an
Assertion block. Using the Test Manager, as opposed to simulating the model itself, allows you to
view, manage, and export results. Also, it sets up a test framework for you to add more tests, capture
baseline data, and reuse tests for other verification activities such as code generation verification.

Run the Test and Examine Results

1 Click Run in the Test Manager Toolstrip.

When you click Run, the left navigation changes from the Test Browser to the Results and
Artifacts pane.

2 Examine the results. The test failed. Right-click the newest result and select Expand All Under
to see all the results. The test failed because BrakeAssertion failed.

 Create and Run a Baseline Test

3-7

3 Click BrakeAssertion and select the check box to visualize the results. You can see that the test
failed at .23 seconds.

4 Plot signals from the output. From the Data Inspector tab, click Subplots and select three plots.

3 Plan Your Test

3-8

5 After you create the plots, the BrakeAssertion signal stays in the first plot. Click a plot where
you want a signal to appear and then click the signal. Using this technique, add Inputs1:3
(brake input) in plot 2 and throt in plot 3.

 Create and Run a Baseline Test

3-9

These plots show you that when the brake goes on (Inputs1:3) the throttle stays on. The
throttle should go to 0.

Locate the Source of the Failure

To locate the source of failure in the model, in the test results, right-click the BrakeAssertion failure
and select Highlight in Model. The model highlights the BrakeAssertion block.

Create and Run a Baseline Test
Baseline tests compare the outputs from a simulation against the expected outputs. In a corrected
version of the model, the throttle goes to 0 if the brake is applied for three time steps. Because the
model is correct, you want to commit the correct results to a test case to test against in the future.

Create Test Case and Assign System Under Test

1 Open the model sltestBasicCruiseControlHarnessModel.
2 In the test browser, select the test file Tutorial Tests. From the Test Manager Toolstrip,

select New > Baseline Test.

The test file contains a new test suite that contains a new baseline test case.
3 Rename the test case My Baseline Test.
4

In the test case, under System Under Test, click Use current model .

Capture the Baseline

You can capture the baseline test outputs in Test Manager as an Excel file or a MAT-file. Alternatively,
you can add an external file to the test case as the baseline.

1 In the test case, under Baseline Criteria, click Capture.
2 Set File format to Excel, enter baseline1 for the filename, and click Capture.

The test case adds the baseline data—the output from the logged signals and the two Outport
blocks.

Open the Excel file and observe the data. Select the baseline and click Edit. Time-series values
appear for each of the logged signals and outputs in the model. Close the Excel file.

3 Plan Your Test

3-10

Run a Baseline Test

One reason to run a baseline test is for regression testing, to see whether the model output still
matches the baseline. In this example, because you just created the baseline, you expect the test to
pass.

Select the test case and click Run. The results match the baseline and the test passes. When you
expand the results, you can see that the verify statements now pass.

See Also
Test Manager

Related Examples
• “Test Planning and Strategies” on page 3-2
• “Examine Test Failures and Modify Baselines”
• “Create a Test Harness” on page 3-12

 Create and Run a Baseline Test

3-11

Create a Test Harness
A test harness is a model that isolates the component under test, with inputs, outputs, and
verification blocks configured for testing scenarios. You can create a test harness for a model
component or for a full model. A test harness gives you a separate testing environment for a model or
a model component. For example:

• You can unit-test a subsystem by isolating it from the rest of the model.
• You can create a closed-loop testing scenario for a controller by adding a plant model to the test

harness.
• You can keep your main model clear of unneeded verification blocks by placing Model Verification

and Test Assessment blocks in the test harness.

To assign a test harness to a test case, select Test Harness in the System Under Test section of the
Test Manager.

You can save the harness with your model, or you can save it in an external file. If your model is
under change management, consider saving the test harness in an external file. The harness works
the same whether it is internal or external to the model. For more information, see “Manage Test
Harnesses” and “Synchronize Changes Between Test Harness and Model”.

Create the Harness
In this example, you create a harness directly from a model. The harness tests the shift_logic
subsystem of the sltestCarRootInport model.

1 Open the model sltestCarRootInport from the folder matlab/examples/simulinktest/
main.

2 Right-click the shift_logic subsystem. From the context menu, select TestHarness > Create
for 'shift_logic'.

3 In the Create Test Harness dialog box, specify the inputs, outputs, and other options:

a Use Constant blocks to provide input signals. Under Sources and Sinks, set the source to
Constant and the sink to Scope.

b Leave the other options with their default selections. By default:

• The harness saves with the model file.
• The harness synchronizes with the model on open, which means that changes to the

model update the harness.
4 Click OK to create the test harness.

3 Plan Your Test

3-12

At the center of the harness is a copy of the shift_logic subsystem. The shift_logic subsystem
is the component under test. The two vertical subsystems contain signal specification and routing.

The signal names used in the component under test propagate from the model to the test harness.
For subsystem harnesses, some propagated signal names might be visible only after you compile the
harness. For block diagram harnesses, signal names are propagated even if you do not select Show
propagated signals in the Signal Properties dialog box.

You can also create a harness, or multiple harnesses at the same time by using the
sltest.harness.create function, the sltest.testmanager.createTestForComponent
function, or the Create Test for Model Component wizard, which is available in the Test Manager. For
information on the wizard, see “Generate Tests and Test Harnesses for a Model or Components”.

For information on test harness architecture, see “Test Harness Construction for Specific Model
Elements”. For information on customizing the default harness settings when you create a new
harness, see “Customize Test Harness Creation Default Property Values”.

Simulate the Test Harness
Assign values to the Constant blocks to test the component:

1 Change the value of the speed block to 50.
2 Change the value of the throttle block to 30.
3 Click Run in the Simulation tab to simulate the harness.
4 Open the scope and look at the result. The shift controller selects third gear.

Test Using the Test Manager
In the previous case, you supplied test inputs with Constant blocks. You can also use test inputs from
external data files.

1 Create a test harness that uses Inport sources.
2 Create a test case that uses the test harness as the System Under Test.
3 Map external inputs to the test case.

Using a test case in the Test Manager allows you to iterate with different test vectors, add test cases,
run batches of test cases, and organize your results. This example shows you how to use external
data with a test harness, and simulate from the Test Manager.

 Create a Test Harness

3-13

1 To open the Test Manager, on the Apps tab, under Model Verification, Validation, and Test, click
Simulink Test. Then, on the Tests tab, click Simulink Test Manager.

2 Select New > Test File from the Test Manager Toolstrip.
3 Name the file ShiftLogicTest.
4

Select New Test Case 1. In the System Under Test section, click Use current model .
5 For Test Harness, select ShiftLogic_InportHarness from the drop down list. The test

harness already exists in the model.
6 In the Inputs section, click Create. Name the input data file shift_logic_input and select

MAT file format.
7 In the Signal Editor, enter the values for the inputs:

1 Select the speed signal and enter 50 for times 0 and 30. Press Enter to update the plot.
2 Select the throttle signal and enter 30 for times 0 and 30. Press Enter to update the plot.

3 Click Save in the Signal Editor Toolstrip.
8 Select output data to capture.

1 In the Simulation Outputs section of the Test Manager, click Add.
2 In the test harness block diagram, select the gear signal line. Select the signal in the

Connect dialog box.
3 Click Done to add the signal to the test case outputs.

9 Click Run in the Test Manager Toolstrip.
10 Expand the results and highlight the gear signal output. The plot shows the controller selects

third gear.

3 Plan Your Test

3-14

See Also
Test Manager

Related Examples
• “Functional Testing for Verification” on page 2-2
• “Test Harness and Model Relationship”
• “Create Test Harnesses and Select Properties”
• “Create and Run a Baseline Test” on page 3-6
• “Refine, Test, and Debug a Subsystem”

 Create a Test Harness

3-15

	Product Overview
	Simulink Test Product Description
	Key Features

	Introduction
	Functional Testing for Verification
	Test Authoring
	Test Generation
	Test Execution
	Reporting

	Plan Your Test
	Test Planning and Strategies
	Identify the Test Goals
	Test a Whole Model or Specific Components
	Use a Test Harness
	Determine the Inputs and Outputs
	Optimize Test Execution Time
	Use the Programmatic or GUI Interface

	Create and Run a Baseline Test
	Start Test Manager
	Verify Model Behavior Against Requirements
	Create and Run a Baseline Test

	Create a Test Harness
	Create the Harness
	Simulate the Test Harness
	Test Using the Test Manager

